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Abstract

We consider a moderate size computational uid dynamics application code known as

HELIX for a study of improving performance by scalar replacement, i.e., loading array

element values that are used repeatedly into scalars to enable them to be register allocated

by the back-end compiler. The goal of scalar replacement is to reduce load/store tra�c.

Our experiments compare three versions of HELIX { the original code, a version in which

scalar replacement was performed by hand, and version in which scalar replacement was

performed automatically by Memoria { a tool for performing scalar replacement developed

at Rice University and Michigan Technological University. Our experiments show that scalar

replacement improves performance of this code by 4 to 12% over and above performance

obtained by using the highest level of optimization with vendor-supplied compilers on an

SGI Origin, an SGI O2 workstation, an IBM SP, and a CRAY T3E. Improvements in the

execution time were primarily due to the reduction in the number of load/store instructions.

1. Introduction

Architectures of modern supercomputers are continuously changing. An optimal code for

traditional vector machines is not optimal for newer machines that are based on deep memory

hierarchies. A developer of an application has knowledge of the algorithm and dependences

among variables and sections of the code. With some knowledge of optimization techniques,

he may be able to improve the performance of the application. Compilers on the other

hand have to discover all optimization opportunities from the code, which at times may be

di�cult, if not impossible. Sometimes compiler based program transformations can aid the

developer in achieving high performance by restructuring the code at the source level so that

a back-end compiler can generate e�cient code. In this study we concentrate on a particular

type of optimization, namely scalar replacement. Motivation for our present work comes

from the code migration group at CEWES MSRC, who indicated that scalar replacement

could be used to signi�cantly improve performance of some of their codes. We undertook this

study to examine a CFD code of interest to CEWES MSRC. We performed our experiments

on a SGI O2K, an SGI O2 workstation, CRAY T3E and an IBM SP. All computations were

performed on a single node, since single process optimization is the focus of this study.
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We present brief descriptions of the code in the next section, followed by a description

of our optimization technique. Simulation results and conclusions are presented in following

sections.

2. Application

The application code we consider in this study is known as the HELIX code [Ramachan-

dran et al., 1989; Steinho� and Ramachandran, 1990]. This code is used for ow computation

of interest to helicopter designers. It solves the unsteady full potential equation in three di-

mensions on an Eulerian grid with embedded vortical velocity that models the inuence of

wake. Such results are used to calculate vibratory air loads in forward ight and performance

in hover. Computations are done to solve

r:(�V ) = 0

where � is the density and V is the velocity. The velocity is decomposed into rotational

(qv) and irrotational (r�) parts. In addition there is also contribution from rotational

coordinate transformation. An iterative technique is used to obtain the ow �eld. In brief,

it has following four steps:

1. The vortex sheet position is integrated as a set of marker streamlines which follow the

ow using interpolated values of V from the �xed grid.

2. Rotational velocity contribution (qv) is computed at grid points near the sheet.

3. A potential (�) is computed at all grid points by solving the compressible mass con-

servation equation.

4. A new velocity V is computed at each grid point after adding the rotational velocity

contribution to the potential and free stream components of the velocity. At conver-

gence the vortex sheet follows the ow.

HELIX is a moderate size FORTRAN code with about 6500 source lines. The most

compute intensive section of the code corresponds to item 3 above. This computation is

performed by the subroutine YSWEEP. A relaxation technique is used for each radial (K)

plane, i.e. from upstream to downstream in the radial, and from upper axial boundary to

bottom axial boundary in the azimuthal direction. Loop 32 within the YSWEEP routine

computes metric terms of computational cells, derivative terms for the potential (�) and

velocities for interior cells. Subroutine MIXFLO is a central program which directs the ow

of the code by calling YSWEEP for each radial (K) plane and setting up marker coordinates

for next free wake calculation. MIXFLO is called by the main program.
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3. Optimization

3.1 Techniques

There are various optimization techniques which one may use to improve performance of

a code. Our present study focuses on a speci�c type of optimization, namely scalar replace-

ment. We provide a brief introduction to this optimization. Other types of optimizations,

such as elimination of common sub expressions, loop unrolling, unit stride access, etc. may

also improve the performance of a particular code signi�cantly. Amount of improvements to

a code will depend on the algorithm and how it is implemented.

In modern computers there are di�erent types of storage with di�erent access times. If a

variable resides in the register, it can be accessed in a clock cycle without generating memory

tra�c. When an array is accessed in some regular pattern, say in a typical �nite di�erence

computation, some variables used for computations at a grid point may be may be reused in

computations at neighboring grid points. In many cases, load store tra�c can be reduced for

some of these references by exploiting temporal locality and storing appropriate variables in

registers. One way to hint to a back-end compiler that an array reference should be stored

in a register to reduce load/store tra�c by exploiting temporal reuse is to replace references

to arrays with scalars. In the following code

DO I=2, N

A(I) = C1*A(I) + C2*(A(I+1) - A(I-1))

ENDDO

A(I-1) is generated in the in the previous iteration, which may be saved in a register for

reuse by the next iteration without loading the value from memory. Such optimization

opportunities should be discovered by a good compiler. However, some compilers may miss

such opportunities. For these compiler some restructuring of the code as shown below will

make it easier to generate e�cient executables.

T = A(1)

DO I=2, N

T = C1*A(I) + C2*(A(I+1) - T)

A(I) = T

ENDDO

Additional discussion on scalar replacement may be found elsewhere (see Carr and

Kennedy, 1994a and 1994b; Callahan et al., 1998). There are also many other optimiza-

tion techniques, such as loop nest optimization, loop unrolling, etc. which a code developer

may use to make the job of a compiler easier. Discussion on these techniques may also be

found in the above reference.
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3.1 Tools

Some shortcomings in vendor compilers may be overcome by using a preprocessor which will

modify the code so that the compiler will be able to easily �nd temporal localities. One

such tool is Memoria which uses optimization techniques discussed by Carr and Kennedy,

1994a and 1994b to generate code with optimal scalar replacement. This tool was initially

developed at Rice University and has been further enhanced at Michigan Technological

University by Steve Carr and his coworkers. Input to Memoria consists of a Fortran source

code along with information about the target machine architecture. Memoria performs

dependence analysis to generate an improved code. Since scalar replacement is already done

in the code, the compiler does not need to worry about this particular optimization.

3.2 Modi�cations to the code

We experimented with three versions of the HELIX code in this work. They are

� The original code: This version of the code was given to us by the code migration

group at CEWES MSRC. It is written with many array references.

� Hand tuned code: We performed scalar replacement in two key loops (Do loops

32 and 105) in YSWEEP routine by hand. Loop 32 has been described in Section 2.

Computations in loop 105 are similar to those in loop 32, except it computes at the

boundaries whereas computations in loop 32 are for interior points in the domain

� Memoria modi�ed code: Memoria performed scalar replacements in the YSWEEP

routine of the original code. Other routines in HELIX were not modi�ed. We limited

scalar replacement only to YSWEEP to make a roughly fair comparison between this

(Memoria modi�ed version) and the hand tuned version.

In the following we give portions of loop 32 in our three versions:

DO 15 I = 1, NX+1

X(I) = X3D(I,J,K)

XM(I) = X3D(I,J+1,K)

XR(I) = X3D(I,J,K+1)

XRM(I) = X3D(I,J+1,K+1)

******

******

15 CONTINUE
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C

DO 32 I=1,NX

XX = XR(I+1) -XR(I) +XRM(I+1) -XRM(I)

XXS = +X(I+1) -X(I) +XM(I+1) -XM(I)

XX = XX +XXS

XY = XR(I+1) +XR(I) -XRM(I+1) -XRM(I)

XYS = +X(I+1) +X(I) -XM(I+1) -XM(I)

XY = XY +XYS

XZ = XR(I+1) +XR(I) +XRM(I+1) +XRM(I)

& -(X(I+1) +X(I) +XM(I+1) +XM(I))

*******

XAV = (X(I)+X(I+1)+XM(I)+XM(I+1)+

& XR(I) +XR(I+1) +XRM(I) +XRM(I+1))*0.125

*******

*******

32 continue

Figure 3.1: Part of original loops 15 and 32

DO 32 I=1,NX

XSUBI = X3D(I,J,K)

XSUBIP1 = X3D(I+1,J,K)

XMSUBI = X3D(I,J+1,K)

XMSUBIP1 = X3D(I+1,J+1,K)

XRSUBI = X3D(I,J,K+1)

XRSUBIP1 = X3D(I+1,J,K+1)

XRMSUBI = X3D(I,J+1,K+1)

XRMSUBIP1 = X3D(I+1,J+1,K+1)

XX = XRSUBIP1 -XRSUBI +XRMSUBIP1 -XRMSUBI

& +(XSUBIP1 -XSUBI +XMSUBIP1 -XMSUBI)

XY = XRSUBIP1 +XRSUBI -XRMSUBIP1 -XRMSUBI

& +(XSUBIP1 +XSUBI -XMSUBIP1 -XMSUBI)

XZ = XRSUBIP1 +XRSUBI +XRMSUBIP1 +XRMSUBI

& -(XSUBIP1 +XSUBI +XMSUBIP1 +XMSUBI)

XAV = (XSUBI +XSUBIP1 +XMSUBI +XMSUBIP1

& + XRSUBI +XRSUBIP1 +XRMSUBI +XRMSUBIP1)*.125

5



*******

*******

32 continue

Figure 3.2: Hand modi�ed code of section shown in Figure 3.1

do i = 1, nx + 1

x(i) = x3d(i, j, k)

xm(i) = x3d(i, j + 1, k)

xr(i) = x3d(i, j, k + 1)

xrm(i) = x3d(i, j + 1, k + 1)

******

enddo

do i = 1, nx

xr$0$0 = xr(i + 1)

xr$1$0 = xr(i)

xrm$2$0 = xrm(i + 1)

xrm$3$0 = xrm(i)

xx = xr$0$0 - xr$1$0 + xrm$2$0 - xrm$3$0

x$4$0 = x(i + 1)

x$5$0 = x(i)

xm$6$0 = xm(i + 1)

xm$7$0 = xm(i)

xxs = x$4$0 - x$5$0 + xm$6$0 - xm$7$0

xx = xx + xxs

xy = xr$0$0 + xr$1$0 - xrm$2$0 - xrm$3$0

xys = x$4$0 + x$5$0 - xm$6$0 - xm$7$0

xy = xy + xys

xz = xr$0$0 + xr$1$0 + xrm$2$0 + xrm$3$0 - (x$4$0 + x$5$0 + xm

*$6$0 + xm$7$0)

*******

xav = (x$5$0 + x$4$0 + xm$7$0 + xm$6$0 + xr$1$0 + xr$0$0 + xrm

*$3$0 + xrm$2$0) * 0.125

*******

*******

enddo

Figure 3.3: Memoria modi�ed code of section shown in Figure 3.1
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4. Results

Results of our study with the HELIX code computations on 101x59x29 grid using a single

SGI O2K node are shown in Table 4.1. Pro�ling the original code shows that most (over

90%) of the computation time is spent in the YSWEEP routine. We focused our tuning

e�orts on to two key loops (loop 32 and loop 105) in this routine. Memoria preprocessing

was limited to the YSWEEP routine to get a reasonable comparison between hand tuned

code and Memoria generated code. We used SGI's Perfex tool (see Speedshop user's guide

for description of this utility) on the SGI O2K and the O2 workstation to gather performance

statistics. Tests on the SGI O2K were done by running the job in the batch mode while other

users were also sharing the machine. The O2 workstation was not shared with any other

user for our measurements. All statistics were gathered multiple times and we report the

averages. Measurements which showed noticeable variations from the mean were discarded.

We used -O0 (no optimization) and -O3 (aggressive optimization) compiler options to gen-

erate executables. In Table 4.1a we show execution time for 10 iterations, % of primary

and secondary data cache misses and TLB misses. We chose to limit our tests to only 10

iterations to keep computation times reasonable while maintaining a fairly good representa-

tion of computational characteristics. The hand tuned version is about 10% faster than the

original version for no optimization case. However, the gain dropped to about 4% for aggres-

sive optimization case. Memoria generated code reduced computation time by about 3.5%

for no optimization case, but the original version performed slightly better with aggressive

optimization. When aggressive compiler option (-O3) is used, the compiler goes through

detailed analysis of the code and performs a signi�cant amount of optimization which we

performed on the source code by hand and Memoria performed automatically. Nevertheless,

hand tuned versions performed better than the original version of the code for all compiler

options. There are less than 1% primary data cache misses when no optimization (-O0) ag

is turned on, while it increased about ten fold to approximately 8% for -O3 option. The

primary data cache hit ratio is one measure of optimization, but it is not the only measure.

For example, say a variable x is stored in a register instead of keeping it in cache and the

program accesses x repeatedly. Then there will be only one cache miss initially and x will

be loaded to a register. Since x now resides in a register, it will be used without any need to

access it from cache, i.e., no cache hit. On the other hand, if x was not loaded on a register,

there would be a cache hit for subsequent uses of x. If all other data access patterns remain

unchanged, then the program with x assigned to a register will run faster although it will

have higher percentage of cache misses. In any case, we believe a 8% cache miss ratio is

high and this high percentage of primary data cache misses with the -O3 option is related to

the data access pattern or the structure of the code. A close examination of loop 32 shows

that many variables are accessed along a line while their structures are three- dimensional.

Many data elements (�eld variables) are accessed repeatedly and used only once in di�erent

phases of computations. Due to the limited size of primary cache, these elements are evicted

from cache between their uses. One may be able to restructure the code without changing

the algorithm so that a sweep is performed along a column instead of a pencil in the three-

dimensional �eld. One may also be able to design the iterative algorithm to ensure better
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temporal locality of data.

Our primary focus in this study is optimization using scalar replacement, which basically

reduces load/store tra�c. We examine this tra�c for our three versions of the code in Table

4.1b. In this table we compare execution times, number of graduated loads and stores with

original code compiled with -O0 option (i.e. no optimization) considered as the base case.

When -O0 ag was used, the hand tuned and Memoria generated versions had 19% and 2%

respectively, fewer number of loads than the original version. The number of stores increased

for both versions, and it went up by as much as 20% for Memoria generated version. For

aggressive optimization, the hand tuned version reduced load and store by 7% and 14%

respectively, over the original code. In the Memoria generated version, stores decreased by

12% while loads increased by 6%.

Version OPT time (sec) % pr. cache miss % sec cache miss % tlb miss

Original O0 6326.263 0.7861 3.8076 .0012

Original O3 1226.373 8.1450 3.0209 .0046

Hand tuned O0 5670.373 0.8147 4.4210 .0013

Hand tuned O3 1175.877 8.0955 3.2951 .0052

Memoria generated O0 6107.141 0.7877 3.7964 .0012

Memoria generated O3 1242.653 7.9090 3.0641 .0039

Table 4.1a: Execution time and data misses

Version OPT time load store

Original O0 1 1 1

Original O3 0.1939 0.1575 0.5249

Hand tuned O0 0.8963 0.8140 1.0419

Hand tuned O3 0.1859 0.1469 0.4517

Memoria generated O0 0.9654 0.9815 1.200

Memoria generated O3 0.1964 0.1673 0.4635

Table 4.1b: Comparisons with the base case

Table 4.1: Computation of HELIX on a single node O2K
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We repeated our tests on an O2 workstation. Both of these machines use the MIPS

R10000 processor. Test on the workstation were done because of our easy access to this

machine and also they provide additional data on a similar platform for veri�cation of data

in our experiments. Results on the O2 workstations are shown in Table 4.2 and they are

in the same format as in Table 4.1. These results follow the same general trend except

secondary data cache and TLB misses on the O2 workstation are much higher than those on

the O2K node. This was due to smaller size L2 cache and page size on the O2 workstation.

Cache sizes for O2K and O2 workstation are given in Table 4.3

Version OPT time (sec) % pr. cache miss % sec cache miss % tlb miss

Original O0 7603.6577 0.8565 11.0561 .0182

Original O3 1497.8949 6.1064 9.5015 .0804

Hand tuned O0 6712.4883 0.8524 11.5299 .0176

Hand tuned O3 1420.8648 5.9182 10.4348 .0707

Memoria generated O0 7287.0278 0.9348 10.6817 .0196

Memoria generated O3 1500.3543 5.9531 9.5009 .0791

Table 4.2a: Execution time and data misses

Version OPT time load store

Original O0 1 1 1

Original O3 0.1970 0.0869 0.4706

Hand tuned O0 0.8828 0.8553 1.0345

Hand tuned O3 0.1869 0.0845 0.3941

Memoria generated O0 0.9584 0.8969 1.2019

Memoria generated O3 0.1973 0.0841 0.5255

Table 4.2b: Comparisons with the base case

Table 4.2: Computation of HELIX on an O2 workstation
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Cache Type O2K (origin) O2 workstation

Primary (L1) Data Cache 32KB 32KB

Secondary (L2) Cache 4MB 1MB

Translation Look aside Bu�er 2MB 512KB

Table 4.3: Cache sizes on our test platforms

Our study also included computations on CRAY T3E and IBM SP. Execution times for

the HELIX code on a single node T3E are shown in Table 4.4. Performances of the original

and the Memoria generated code for aggressive compiler option (-O3) are similar, while hand

tuned code is about 12% faster. Hand tuned code was about 7% faster than the original

code on a single processor SP when compiled with -O3 option.

Version OPT=O0 OPT=O3

Original 12563 2038

Hand tuned 11080 1920

Memoria generated 11814 2094

Table 4.4: Computation time (sec) of HELIX on a single node T3E

4. Conclusions

In summary we �nd the same basic trend in all three platforms, namely hand tuning

gave the best results reducing computation time of the original code by 4 to 12%. Memoria

performed selective scalar replacement based on the architecture information. E�ects of hand

coded scalar replacement or scalar replacement by Memoria are more pronounced when no

optimization ag is turned on during compilation. Hand tuning, Memoria or a similar tool

can help achieve high performance especially when the compiler is not extremely adept in

optimization. However, there will be less bene�t if the compiler can generate e�cient code.
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